Skip to main content

Person

Temuulen Tsagaan Sankey

Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/eap.1389/full): Woody plant encroachment and overall declines in perennial vegetation in dryland regions can alter ecosystem properties and indicate land degradation, but the causes of these shifts remain controversial. Determining how changes in the abundance and distribution of grass and woody plants are influenced by conditions that regulate water availability at a regional scale provides a baseline to compare how management actions alter the composition of these vegetation types at a more local scale and can be used to predict future shifts under climate change. Using a remote-sensing-based approach, we assessed the balance between grasses and woody plants...
thumbnail
These data are a species-level classification map of riparian vegetation in the Colorado River riparian corridor in Grand Canyon, Arizona, USA. The classification is derived from 0.2 m pixel resolution multispectral aerial imagery acquired in May 2013. The classification spans the riparian zone of the river corridor between Glen Canyon Dam near Page, Arizona, and Lake Mead at Pearce Ferry, Arizona. The classification is divided into 5 distinct reaches of the river: Glen Canyon, Marble Canyon, Eastern Grand Canyon, Western Grand Canyon upstream of Diamond Creek, and Western Grand Canyon downstream of Diamond Creek. The method used for classification was a combination of supervised Classification And Regression Tree...
thumbnail
These data are satellite image-derived, classification maps of tamarisk (Tamarisk spp.) along the Colorado River in Grand Canyon National Park from river km 315 to 363, approximately from Parashant Canyon to Diamond Creek tributaries. The classification maps are published in TIF raster format. Two maps are published: 1) a classification of healthy, defoliated, and tamarisk canopy dieback from the tamarisk beetle (Diorhabda carinulata) in May 2019, and 2 a classification of healthy and beetle-impacted tamarisk in August 2019. Tamarisk was mapped using a Spectral Angle Mapper supervised classification derived from 2 m resolution, multispectral WorldView-2 imagery, with an overall accuracy of 80.0% in May 2019 and...
thumbnail
Woody plant encroachment and overall declines in perennial vegetation in dryland regions can alter ecosystem properties and indicate land degradation, but the causes of these shifts remain controversial. Determining how changes in the abundance and distribution of grass and woody plants are influenced by conditions that regulate water availability at a regional scale provides a baseline to which compare how management actions alter the composition of these vegetation types at a more local scale and can be used to predict future shifts under climate change. Using a remote sensing-based approach, we assessed the balance between grasses and woody plants and how climate and topo-edaphic conditions affected their abundances...
thumbnail
This data release presents data used for analyzing spatial and temporal differences in soil surface roughness within selected biocrust communities. These records were collected by ground-based lidar for 121, 1m x 3m soil plots with biological soil crusts (biocrusts). Roughness was estimated from 5 mm resolution data (CloudCompare v. 2.10.2, 2019) for two Great Basin Desert sites (UTTR-1; UTTR-2) in December 2015 and one Chihuahuan Desert site (JER) in February 2016. Data were again collected in June 2018 for UTTR-1 and UTTR-2. Additional field and laboratory data were included within this study to understand differences in soil surface roughness between UTTR and JER as well as between the 2016 and 2018 surveys at...
Categories: Data; Tags: 5 mm resolution, Chihuahuan Desert, Ecology, Geography, Geomorphology, All tags...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.