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A Brief History of

Industrial Revolutions (IR)

 First IR (Began late 18t Century)
* Production mechanized through water and steam power

« Second IR (Began early 20t Century)
* Mass production created through electric power

e Third IR (Began 1950s to 1970s)

e Rapid growth in computing and communication enabled
by shift from mechanical and analog electronic
technology to digital electronics

* Fourth IR (Now)

« Unknown consequences from technological fusion that
IS blurring the lines between physical, digital, and
biological spheres

2 USGS

>




Fourth Industrial Revolution

 What distinguishes the fourth IR?

e Speed of current breakthroughs has no historical
precedent — evolving at an exponential rather than
linear rate

 Disrupting almost every industry in every country

* Breadth and depth of these changes herald
transformation of entire systems of production,
management, and governance
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Fourth IR Technology Clusters

Relevant to Environmental Applications

« 3D Printing

* Advanced Materials

o Artificial Intelligence

* Robotics

* Drones and Autonomous Vehicles
» Biotechnologies

* Energy Capture, Storage and
Transmission

» Geo-engineering
* Internet of Things

3D Printing-Based Integrated Water Quality Sensing

_ ] System
 New Computing Technologies _ o )
Muinul Banna 1, Kaustav Bera 2, Ryan Sochol 3, Liwei Lin ¢, Homayoun Najjaran 1
» Advanced Sensor Platforms Rehan Sadiq tand Mina Hoorfar
 Virtual, augmented and mixed
reality
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Why Build the NWM?

Address Societal Need by Leveraging the 4 IR




Water and the Global Economy

ECONOMIC

COMMITTED TO
IMPROVING THE STATE
OF THE WORLD
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Global Risks Landscape 2015
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Water Stakeholders have
Integrated Priorities

Need integrated understanding of near- and long-term outlook and risks

Actionable Water Intelligence

Integrated Water Analyses, Predictions and Data
Hydrologic Economic Demographic Environmental Political
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OFFICE OF

NATIONAL WATER MODEL (O W Pl

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

Movie (slide show to view)







National Water Model & &

Initial Operating Capability — v1.0 implemented August 16, 2016

 Spatially continuous estimates of major water cycle components (e.g., snowpack, soil
moisture, channel flow, major reservoir inflows, flood inundation)

e Operational forecast streamflow guidance for currently underserved locations: 3,600
forecast points 2.7 million NHDPIlus river reaches (700 fold increase in spatial
density)

* Employs an Earth system modeling architecture that permits rapid model evolution of new
data, science and technology (i.e. WRF-Hydro)

Current NWS River Forecast Points
overlaid with NWM Stream Reaches

OFFICE OF
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Major Rivers and Traditional

NWS Hydrologic Forecast Points
(~4000 USGS Streamgages)

e

/\/ Major Rivers
@ Current NWS River Forecast Locations



Major Rivers and Traditional
NWS Hydrologic Forecast Points
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WATER PREDICTION + NATIONAL INFRASTRUCTURE

Hospitals, EMS & Fire Stations
Full Resolution National Hydrography Dataset NHD+
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NWM Streamflow Forecast for Hurricane Harvey

10 Day Forecast (left) and corresponding Analysis (right): 12Z Aug 22 - 12Z Sep 1

16
Overall extreme streamflow pattern forecast several days in advance by NWM







What's Next?

National Water Model 2.0 and Beyond...




Water Prediction
Work Program (2WP)

National Water Model 2.0

Don Cline

USGS Associate Director, Water Resources
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2WP Development

Major Prediction Components

Add three new capabilities to the National Water Model:

 Water Temperature

» National analysis (i.e. "Tnowcast”) and prediction of thermal characteristics of
every stream reach in NHD+ hydrography (N = 2.7 million)

e Surficial Processes: Erosion and Sediment/Constituent
Entrainment

» National analysis and prediction of sources, characteristics, and movement of
materials that end up in NHD+ stream channels

* In-Channel Constituent Transport

* National analysis and prediction of materials being transported in NHD+
stream channels, including physical and chemical fate
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Environment and the Economy
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IMPROVING THE STATE
OF THE WORLD
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WEF Vision: A Real-Time

Digital Dashboard of the Earth

* Areal-time, open API digital geospatial dashboard for the planet
would enable the monitoring, modeling and management of

environmental systems at a scale and speed never before
possible.

* We have the Al methods to do this, but we need more information,
more frequently received and at greater resolution than present.

« Challenge is to build something truly transformational, easy to use
In real-time, open-access and data dense.
P WO RLD
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USGS Integrative Predictive

Science Capacity

We are beginning to transform very high level
concepts into feasible integrated plans that build
upon the National Water Model.




Emerging Systems Concept

Level 1 Level 2 Level 3 Level 4
Fundamental Fundamental Higher Level Data Products,
Data Models Models e Decision

Support Tools

Full Range of Consume Lower level ' . : Consume
USGS fundamental data and in real-time
Observations, data, generate model output L1 - L3 data and
Monitoring more data as input, model output to
(All inherently generate more generate new

geospatial) data information

Analytics Analytics Analytics Analytics




MATURITY;
HYDROLOGIC PREDICTION SKILL

. . LARGE-SCALE
MOdEI I ng EVOl UtIOn HIGH-RESOLUTION
EARTH SYSTEM MODELS
WITH ADVANCED
WATERSHED PHYSICS
(e.g. National Water Model)

A

* More complete Lateral Hydrology

* Numerous Possible Products Useful to ,ﬂ
Decision Makers, at Relevant Scales: K4
 State Variables and Fluxes, x ! « Al
Derivatives /
Single Fundamental Product: o »/ /
Tuned Flow Forecast at a Point ﬂ_,,!/ .......

STATISTICAL/ \
ENGINEERING
MODELS

ADVANCED
FULL PHYSICS

(e.g. NWSRFS SMALL WATERSHED
MODELS '
(e.8.GSSHA, PIHM Simple Lateral Hydrology
LAND MODELS \ .
(e.g. NOAH, VIC) Column Physics

Boundary Layer

>
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Modeling Evolution

Nater Resources Research

{ESEARCH ARTICLE On the deterministic and stochastic use of hydrologic models

william H. farmer’ and Richard M. Vogel®
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Eventually, all things merge into

one, and a river runs through it.

Norman Maclean

Contact:

Don Cline

Associate Director for Water Resources
dcline@usgs.gov

703-648-4557
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Earth Intelligence:

Limits to Improving Capacity

First Order
Constraint

Second (or lower) Order
Constraints

Essential to run
L2 and L3
models

Real-time data
access essential
to support live

UNDERSTANDING
Intra/Interdisciplinary Component Integration




/1. NWM Forcing Engine
(2 km.grid)

\_ | |
(1 km grid) 4

Model Chain

NWM uses NCAR supported community WRF-Hydro system
NWM: http://water.noaa.gov/about/nwm

2-way coupling

N

WRF-Hydro: https://www.ral.ucar.edu/projects/wrf_hydro

3. Terrain Routing \
Module
(250 m grid)

(4. NHDPIlus Catchment S
Aggregation 7o
(2.7M unique
catchments an
river reaches)
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(5. Channel &
Reservoir p

Routing: -
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http://water.noaa.gov/about/nwm
https://www.ral.ucar.edu/projects/wrf_hydro

National Water Model

Operational Configurations

Short-Range

Assinlation Flood
Prediction’
Cycling Frequency
Hourly 3-Hourly
Forecast Duration
-3 hrs 0-2 days

Spatial Discretization & Routing

1km/250m/NHD+ 1km/250m/NHD+
Reach Reach

Medium-Range Long-Range
‘Flow ‘Water
Prediction’ Resources’

Daily ~Daily (16 mem)
0-10 days 0-30 days
1km/250m/NHD+ 1 km/catchment

Reach INHD+ Reach

Meteorological Forcing

MRMS blend/

HRRR-NAM bkgnd. Downscaled HRRR

Short-range +
Downscaled GFS

Downscaled & bias-
corrected CFS




Top 200 Supercomputers in U.S. 2015

(Total Number of Cores)
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Historical Price of Memory and Storage
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Which iIs the Best Model?




	Earth Intelligence:�The Fourth Industrial Revolution,�The National Water Model, and the�Future of Water Prediction�
	A Brief History of �Industrial Revolutions (IR)
	Fourth Industrial Revolution
	Fourth IR Technology Clusters�Relevant to Environmental Applications
	Why Build the NWM?
	Water and the Global Economy
	WEF Global Risks Landscape
	Global Risks Landscape 2015
	Water Stakeholders have Integrated Priorities
	Slide Number 10
	  National Water Model�   Initial Operating Capability – v1.0 implemented August 16, 2016
	Major Rivers and Traditional �NWS Hydrologic Forecast Points�(~4000 USGS Streamgages)
	Major Rivers and Traditional �NWS Hydrologic Forecast Points
	WATER PREDICTION + NATIONAL INFRASTRUCTURE�Hospitals, EMS & Fire Stations�Full Resolution National Hydrography Dataset NHD+
	WATER PREDICTION + NATIONAL INFRASTRUCTURE�Hospitals, EMS & Fire Stations�Full Resolution National Hydrography Dataset NHD+
	Slide Number 16
	What’s Next?
	Water Prediction Work Program (2WP)
	2WP Development�Major Prediction Components
	Environment and the Economy
	Global Risks Landscape 2018
	WEF Vision: A Real-Time�Digital Dashboard of the Earth
	Slide Number 23
	USGS Integrative Predictive�Science Capacity
	Emerging Systems Concept
	Modeling Evolution
	Modeling Evolution
	Slide Number 28
	Earth Intelligence: �Limits to Improving Capacity
	Slide Number 30
	National Water Model�Operational Configurations
	Top 200 Supercomputers in U.S. 2015 �(Total Number of Cores)
	Historical Price of Memory and Storage
	Which is the Best Model?

