Containerization As A Core Strategy

• EPA has a multi-cloud environment: AWS, Azure and Cloud.gov, all of which support Docker containers.

• EPA can also support Docker on Linux and OpenShift as well as in the High Performance Computing (HPC) environment via Singularity.
What is Docker?

• Docker is often thought of as a Virtual Machine…but it isn’t.

• Docker is
 • a.) a packaging specification and
 • b.) a runtime for executing the packages (containers)

• Docker is much leaner than a VM, requires much less overhead

• Dockerfiles are similar to linux bash scripts, and are the recipe to build the executable Docker images (and dockerfiles are more easily sharable and customizable than VM images)

• Docker images are run on a Docker runtime. The Docker runtime can run multiple containers, and there are frameworks for scaling orchestrating containers across clusters of servers
Why use Docker?

- Reusability
- Lightweight, smaller footprint than a VM
- Support different application stacks
- “Deploy and run anywhere” - Run on different environments and managed services (AWS, Azure, etc)
- Can develop locally and deploy to cloud or other target environments
- For analytics, can use Docker to decompose functionality into microservices
- Can use Docker to spin up and replicate multiple instances to run in parallel
What Goes Where?

Process Flow (simplified) for DMAP Analytics Use Case

Project Formulation (Customer) → Initial planning / Budget / STAMA (Customer / OMS) → Architecture Review (ODSTA) → Initial Platform Selection Guidance (OMS) → Analytics - DMAP Candidate → Initial Consulting / Onboarding (DMAP Team) → Project Development (Customer) → Deployment / Support (DMAP Team)

August 2020: DMAP Team working with ODSTA to inform on services offerings and define criteria for what makes a viable candidate for DMAP

* Work in progress - Still figuring out our platform selection criteria
Containerization vs. Other Options

<table>
<thead>
<tr>
<th></th>
<th>Virtual Machine</th>
<th>Container</th>
<th>Lambda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach</td>
<td>Server</td>
<td>Swarm Cluster</td>
<td>Serverless</td>
</tr>
<tr>
<td>Team</td>
<td>Ops</td>
<td>DevOps</td>
<td>Dev</td>
</tr>
<tr>
<td>Architecture</td>
<td>N-Tier</td>
<td>Microservice</td>
<td>Event Driven</td>
</tr>
<tr>
<td>Pros</td>
<td>Consolidation</td>
<td>Portability</td>
<td>Scalability</td>
</tr>
<tr>
<td>Cons</td>
<td>Heaviness</td>
<td>Simplicity</td>
<td>Tight AWS Integration Short Execution Time</td>
</tr>
</tbody>
</table>
Containerization And Serverless Can Drive Best Practices

• Consider apps as ephemeral
• Cloud-native: Twelve-Factor Design
 • https://12factor.net
 • Store config in the environment
 • Treat backing services as attached resources
 • Code for fast startup and graceful shutdown
• Dockerfile Best Practices
 • https://docs.docker.com/
 • Minimize Layers
 • Build in stages
 • Decouple applications
• Many other guides exist
• In AWS, leverage other managed services where feasible/appropriate
AWS DevOps

• We use AWS CDK to spin up stacks – manages environment and permissions, parameterized scripting for reproducibility

• We are using GitLab to manage our AWS Analytics build process

• Also using CodeCommit, S3 sync and other AWS tools

• National Computer Center Cloud DevOps team is also looking at Jenkins, Rancher, Atlassian and other tools

• How do we bring in diverse developer teams, contractors, et cetera?

• Works in progress…
How To Get To DevSecOps?

• Currently using Nessus to scan, Trend Micro Deep Security and other tools – build scans and nightly scans automated

• But what criteria for automating?
 • False positives in scan results?
 • Manual review and control gates for deploying to production?
 • Minor versus major release?

• Many things to still figure out…
Thank You

• Dave Smith
 • US Environmental Protection Agency
 • Office of Mission Support (OMS-EI)
 • Office of Information Management (OIM)
 • Information Access and Analytic Services Division (IAASD)
 • (202) 566-0797
 • smith.davidg@epa.gov