...
λb= wavelength of the water wave or Bragg wave, Gigahertz; GHz
λ = wavelength of the transmitted radar signal; GHz
θ is the incidence angle
λ = c / v
Where,
c = speed of light = 3E8 meters per second, m/s
v = frequency in hertz; Hz
Given,
K-band radar transmission frequency = 24 GHz = 24E9 Hz
Incidence angle = 45 degrees
λb = 24 GHz x 29.98 cm/GHz3E8 m/s x 100 cm/m / 24E9 Hz / (2 x sin 45 degrees) = 0 .88 cm, which represents the small-scale surface waves that serve as scatterers. A wind-drift correction algorithm was developed and applied to the Red River of the North at Grand Forks, ND (Chris Laveau). The results are illustrated in figures 10 (raw discharge) and 11 (corrected discharge for wind drift).
...
v = 1055 Hz x 186,000 mi/s x 5,280 ft/mi/(2 x 24.150 GHz x 109 Hz/1 GHz) = 21.5 fps Eq. 3
Some portable and fixed-mount radars (Sommer Messtechnik) produce spectra, which offer a quantitative tool that serves as a “spin test” for electromagnetic instruments and can be used to qualify the value of surface-water velocity estimate. Figures 14 through 16 offer examples of good, fair, and poor spectra that can be used to assess the quality of the measurement.
Figures
Figure 1 |
Handheld radar (Stalker Pro II SVR) deployed from a bridge used to measure surface-water velocities concurrently while measuring point velocities with a FlowTracker at the y-axis in a cross section. |
...