Confluence Retirement

In an effort to consolidate USGS hosted Wikis, myUSGS’ Confluence service is scheduled for retirement on January 27th, 2023. The official USGS Wiki and collaboration space is now SharePoint. Please migrate existing spaces and content to the SharePoint platform and remove it from Confluence at your earliest convenience. If you need any additional information or have any concerns about this change, please contact myusgs@usgs.gov. Thank you for your prompt attention to this matter.

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Abstract: The expense and logistics of monitoring streamflow (e.g. stage and discharge) and nearshore waves (e.g. height and period) using in situ instrumentation such as current meters, bubblers, pressure transducers, etc, limits the extent to which such important basic information can be acquired. Machine learning might offer a solution, if such information can be obtained remotely from time-lapse imagery using inexpensive consumable camera installations. To that end, I describe a proof-of-concept study into designing and implementing a single deep learning framework that can be used for both stream gaging and wave gauging from appropriate time-series of imagery. I show that it is possible to train the framework to estimate 1) stage and/or discharge from oblique imagery of streams at USGS gaging stations, using existing time-lapse camera infrastructure; and 2) nearshore wave height and period from oblique and rectified imagery from USGS Argus systems. This proof-of-concept technique is based on deep convolutional neural networks (CNNs), which are deep learning models for regression tasks based on automated image feature extraction. The stream/wave gauge model framework consists of an existing generic CNN model to extract features from imagery - called a ‘base model', with additional layers to distill the feature information into lower dimensional spaces, prevent overfitting, and a final layer of dense neurons to predict continuously varying quantities. Given enough training data, the model can generalize well to a site despite variation in, for example, lighting, weather, snow cover, vegetation, and any transient objects in the scene. This development might offer the potential to train models for imagery at sites based on short deployments of in situ instrumentation, especially useful for sites where instrumentation is difficult or expensive to maintain for long periods. This entirely data-driven technique, at least for now, must be trained separately for each site and quantity, so would be suitable for very long-term, site-specific estimation of wave or hydraulic parameters from stationary camera installations, subsequent to a training period. Further development might promote low-cost (or even hobbyist) hydrodynamic and hydraulic monitoring anywhere. 

2019 June 11 - Strategic Science Planning at USGS

...