Description: This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Bolinas map area, California. The vector data file is included in "Contours_OffshoreBolinas.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. 10-m interval contours of the Offshore of Bolinas map area, California, were generated from bathymetry data collected by California State University, Monterey Bay (CSUMB), by Fugro Pelagos, and by Moss Landing Marine Laboratory (MLML). Mapping was completed between 2004 and 2010, using a combination of 200-kHz and 400-kHz Reson 7125, and 244-kHz Reson 8101 multibeam echosounders, as well as 468-kHz SEA SWATHPlus and 250-kHz GeoSwath interferometric systems. These mapping missions combined to collect bathymetry from about the 10-m isobath to beyond the 3-nautical-mile limit of Californiaís State Waters. Bathymetric contours at 10-m intervals were generated from a modified 10-m bathymetric surface. The most continuous contour segments were preserved while smaller segments and isolated island polygons were excluded from the final output. Contours were smoothed via a polynomial approximation with exponential kernel (PAEK) algorithm using a tolerance value of 60 m. The contours were then clipped to the boundary of the map area. These data are not intended for navigational purposes.
Description: This part of DS 781 presents data for faults for the geologic and geomorphic map of the Offshore of Bolinas map area, California. The vector data file is included in "Faults_OffshoreBolinas.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. The Offshore of Bolinas map area straddles the right-lateral transform boundary between the North American and Pacific plates and is cut by several active faults that cumulatively form a distributed shear zone, including the San Andreas Fault, the eastern strand of the San Gregorio Fault, the Golden Gate Fault, and the Potato Patch Fault (Bruns and others, 2002; Ryan and others, 2008). These faults are covered by sediment (mostly unit Qms) with no seafloor expression, and are mapped using seismic-reflection data (see field activities S-8-09-NC and L-1-06-SF). The San Andreas Fault is the primary plate-boundary structure and extends northwest through the southern part of the map area before passing onshore at Bolinas Lagoon. This section of the San Andreas Fault has an estimated slip rate of 17 to 24 mm/yr (U.S. Geological Survey, 2010), and the devastating Great 1906 California earthquake (M 7.8) is thought to have nucleated on the San Andreas a few kilometers south of this map area offshore of San Francisco (e.g., Bolt, 1968; Lomax, 2005). The San Andreas Fault forms the boundary between two distinct basement terranes, Upper Jurassic and Lower Cretaceous melange and graywacke sandstone of the Franciscan Complex to the east, and Late Cretaceous granitic and older metamorphic rocks of the Salinian block to the west. Franciscan Complex rocks (unit KJf, undivided) form seafloor outcrops adjacent to the shoreline southeast of Stinson Beach that are commonly continuous with onshore coastal outcrops. Faults were primarily mapped by interpretation of seismic reflection profile data (see field activities S-8-09-NC and L-1-06-SF). The seismic reflection profiles were collected between 2006 and 2009.
Description: This part of DS 781 presents data for folds for the geologic and geomorphic map of the Offshore of Bolinas map area, California. The vector data file is included in "Folds_OffshoreBolinas.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. The Offshore of Bolinas map area straddles the right-lateral transform boundary between the North American and Pacific plates and is cut by several active faults that cumulatively form a distributed shear zone, including the San Andreas Fault, the eastern strand of the San Gregorio Fault, the Golden Gate Fault, and the Potato Patch Fault (Bruns and others, 2002; Ryan and others, 2008). These faults are covered by sediment (mostly unit Qms) with no seafloor expression, and are mapped using seismic-reflection data (see field activities S-8-09-NC and L-1-06-SF). The San Andreas Fault is the primary plate-boundary structure and extends northwest through the southern part of the map area before passing onshore at Bolinas Lagoon. This section of the San Andreas Fault has an estimated slip rate of 17 to 24 mm/yr (U.S. Geological Survey, 2010), and the devastating Great 1906 California earthquake (M 7.8) is thought to have nucleated on the San Andreas a few kilometers south of this map area offshore of San Francisco (e.g., Bolt, 1968; Lomax, 2005). The San Andreas Fault forms the boundary between two distinct basement terranes, Upper Jurassic and Lower Cretaceous melange and graywacke sandstone of the Franciscan Complex to the east, and Late Cretaceous granitic and older metamorphic rocks of the Salinian block to the west. Franciscan Complex rocks (unit KJf, undivided) form seafloor outcrops adjacent to the shoreline southeast of Stinson Beach that are commonly continuous with onshore coastal outcrops. Folds were primarily mapped by interpretation of seismic reflection profile data (see field activities S-8-09-NC and L-1-06-SF). The seismic reflection profiles were collected between 2006 and 2009.
Description: This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Bolinas map area, California. The vector data file is included in "Geology_OffshoreBolinas.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. The continental shelf within California's State waters in the Bolinas area is relatively flat (less than 0.3 degrees) and shallow (less than 30 m) in the entire area, however the seafloor of the "Marin shelf" east of the San Andreas Fault (see below) is smooth and covered with sediment, whereas the seafloor of the "Bolinas shelf" west of this fault has extensive bedrock outcrop from the nearshore to depths of about 25 m and much less sediment cover. The morphology and geology of this shelf result from the interplay between local tectonics, sea-level rise, sedimentary processes, and oceanography. Tectonic influences are related to local faulting, folding, uplift, and subsidence (see below). Sea level has risen about 125 to 130 m over about the last 21,000 years (for example, Lambeck and Chappel, 2001; Gornitz, 2009), leading to progressive eastward migration (a few tens of km) of the shoreline and wave-cut platform, and associated transgressive erosion and deposition (for example, Catuneanu, 2006). The Offshore of Bolinas map area is now subjected to full, and sometimes severe, Pacific Ocean wave energy and strong currents. Given their relatively shallow depths and exposure to high wave energy, modern shelf sediments are mostly sand (unit Qms). More coarse-grained sands and gravels (units Qmsc and Qmss) are primarily recognized on the basis of bathymetry and high backscatter (see Bathymetry--Offshore Bolinas, California and Backscattter A to E--Offshore Bolinas, California, DS 781, for more information). Unit Qmsc occurs in two areas, on the east flank of Bolinas shelf bedrock exposures, and as three mounds south of Bolinas near the outer boundary of California’s State Waters at water depths of about 25 m. The largest of these mounds is about 450 m long and 70 m wide, and has 80 cm of positive relief above the seafloor. Unit Qmss is much more extensive and forms erosional lags in rippled scour depressions (for example, Cacchione and others, 1984) that are typically a few tens of centimeters deep and bounded by mobile sand sheets. The depressions occur in four distinct locations. (1) The first location lies adjacent to bedrock outcrops within 2 km of the shoreline south of Double Point (along the western edge of the map area) at water depths of 10 to 25 m. (2) The second unit Qmss location is about 2 to 6 km south of Bolinas Lagoon at similar water depths, along the eastern flank of the Bolinas shelf. (3) The third, more restricted location, occurs about 3 km southeast of Rocky Point at water depths of about 10 to 12 m along the eastern edge of the map area, adjacent to and offshore of small bedrock uplifts. (4) The fourth location, 2 km south of Stinson Beach, is notably different. The polygon on the map encloses a field that includes more than one hundred, much smaller (length less than 20 m) oval depressions and intervening sand flats, perhaps an originally much larger field that has been almost completely filled in by sediment. Similar unit Qmss rippled-scour depressions are common along this stretch of the California coast where offshore sandy sediment can be relatively thin (thus unable to fill the depressions) due to both lack of river input and to significant erosion and transport of sediment during large northwest winter swells. Although the general areas in which both unit Qmss scour depressions and surrounding mobile sand sheets occur are not likely to change substantially, the boundaries of the unit(s) are likely ephemeral, changing seasonally and during significant storm events. Areas where shelf sediments form thin (less than 2.5 m) veneers over low-relief Neogene bedrock (see below) occur in the western half of the map and are mapped as units Qms/Tsc (Santa Cruz Mudstone) and Qms/Tp? (Purisima Formation, queried). These hybrid units are recognized and delineated based on the combination of flat relief, continuity with moderate to high relief onshore or offshore bedrock outcrops, high-resolution seismic-reflection data (see field activities S-8-09-NC and L-1-06-SF), and in some cases moderate to high backscatter. The thin sediment layer is regarded as ephemeral and dynamic, and may or may not be present at a specific location based on storms, seasonal/annual patterns of sediment movement, or longer-term climate cycles. In a nearby, similarly high-energy setting, Storlazzi and others (2011) have described seasonal burial and exhumation of submerged bedrock in northern Monterey Bay. The southeastern corner of the map area includes a portion of the outer flank of the horseshoe-shaped "San Francisco Bar" (unit Qmsb), which has formed at the mouth of the San Francisco ebb-tidal delta (Barnard and others, 2007; Dallas and Barnard, 2011). This delta-mouth bar is shaped by both tidal currents and waves, resulting in a variably hummocky, mottled, and rilled seafloor, and this surface texture is used as a primary criteria for mapping the unit and defining its contacts. Map unit polygons were digitized over underlying 2-meter base layers developed from multibeam bathymetry and backscatter data (see Bathymetry--Offshore Bolinas, California and Backscattter A to E--Offshore Bolinas, California, DS 781, for more information). The bathymetry and backscatter data were collected between 2006 and 2010.
Description: This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Bolinas map area, California. The vector data file is included in "Habitat_Bolinas.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html.
Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using underwater video images and seafloor samples obtained by the USGS. These maps display various habitat types that range from flat, soft, unconsolidated sediment-covered seafloor to hard, deformed (folded), or highly rugose and differentially eroded bedrock exposures. Rugged, high-relief, rocky outcrops that have been eroded to form ledges and small caves are ideal habitat for rockfish (Sebastes spp.) and other bottom fish such as lingcod (Ophiodon elongatus). Habitat map is presented in a map format generated in a GIS (ArcMap), and both digital and hard-copy versions will be produced.
Description: This part of DS 781 presents the seafloor-character map Offshore of Bolinas, California (raster data file is included in "SeafloorCharacter_OffshoreBolinas.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html). This raster-format seafloor-character map shows four substrate classes of Offshore of Bolinas, California. The substrate classes mapped in this area have been further divided into the following California Marine Life Protection Act depth zones and slope classes: Depth Zone 2 (intertidal to 30 m), Depth Zone 3 (30 to 100 m), Slope Class 1 (0 degrees - 5 degrees), and Slope Class 2 (5 degrees - 30 degrees). Depth Zone 1 (intertidal), Depth Zone 4 (100 to 200 m), Depth Zone 5 (greater than 200 m), and Slopes Classes 3-4 (greater than 30 degrees) are not present in the region covered by this block. The map is created using a supervised classification method described by Cochrane (2008), available at http://doc.nprb.org/web/research/research%20pubs/615_habitat_mapping_workshop/Individual%20Chapters%20High-Res/Ch13%20Cochrane.pdf
Description: This part of DS 781 presents data for the bathymetry and shaded-relief maps of the Offshore of Bolinas, California (raster data file is included in "BathymetryHS_OffshoreBolinas.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. The bathymetry and shaded-relief maps of Offshore Bolinas, California, were generated from bathymetry data collected by California State University, Monterey Bay (CSUMB), by Fugro Pelagos, and by Moss Landing Marine Laboratory (MLML). Mapping was completed between 2004 and 2010, using a combination of 200-kHz and 400-kHz Reson 7125, and 244-kHz Reson 8101 multibeam echosounders, as well as 468-kHz SEA SWATHPlus and 250-kHz GeoSwath interferometric systems. Moss Landing Marine Laboratory mapped the nearshore region north of Bolinas in 2004 prior to the California Seafloor Mapping Program (CSMP). The nearshore region from south of Bolinas Lagoon to Stinson Beach was mapped by Fugro Pelagos in 2009 for a project outside of the CSMP and only bathymetry data were collected. These mapping missions combined to collect bathymetry from about the 10-m isobath to beyond the 3-nautical-mile limit of Californiaís State Waters.
Description: This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files is included in "BackscatterA_8101_2004_OffshoreBolinas.zip", which are accessible from http://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. The acoustic-backscatter map of the Offshore of Bolinas map area, California, was generated from backscatter collected by California State University, Monterey Bay (CSUMB), by Fugro Pelagos, and by Moss Landing Marine Laboratory (MLML). Mapping was completed between 2004 and 2010, using a combination of 200-kHz and 400-kHz Reson 7125, and 244-kHz Reson 8101 multibeam echosounders, as well as 468-kHz SEA SWATHPlus and 250-kHz GeoSwath interferometric systems. Moss Landing Marine Laboratory mapped the nearshore region north of Bolinas in 2004 prior to the California Seafloor Mapping Program (CSMP). The nearshore region from south of Bolinas Lagoon to Stinson Beach was mapped by Fugro Pelagos in 2009 for a project outside of the CSMP and only bathymetry data were collected. Therefore, note that the shaded relief map coverage (see Bathymetry Hillshade--Offshore of Bolinas, California, DS 781) does not match the acoustic-backscatter map coverage (see Backscatter A-E--Offshore of Bolinas, California, DS 781). Within the acoustic-backscatter imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and sediment type. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones). These data are not intended for navigational purposes.
Description: This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files is included in "BackscatterB_8101_2007_OffshoreBolinas.zip", which are accessible from http://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. The acoustic-backscatter map of the Offshore of Bolinas map area, California, was generated from backscatter collected by California State University, Monterey Bay (CSUMB), by Fugro Pelagos, and by Moss Landing Marine Laboratory (MLML). Mapping was completed between 2004 and 2010, using a combination of 200-kHz and 400-kHz Reson 7125, and 244-kHz Reson 8101 multibeam echosounders, as well as 468-kHz SEA SWATHPlus and 250-kHz GeoSwath interferometric systems. Moss Landing Marine Laboratory mapped the nearshore region north of Bolinas in 2004 prior to the California Seafloor Mapping Program (CSMP). The nearshore region from south of Bolinas Lagoon to Stinson Beach was mapped by Fugro Pelagos in 2009 for a project outside of the CSMP and only bathymetry data were collected. Therefore, note that the shaded relief map coverage (see Bathymetry Hillshade--Offshore of Bolinas, California, DS 781) does not match the acoustic-backscatter map coverage (see Backscatter A-E--Offshore of Bolinas, California, DS 781). Within the acoustic-backscatter imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and sediment type. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones). These data are not intended for navigational purposes.
Description: This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files is included in "BackscatterC_7125_OffshoreBolinas.zip", which are accessible from http://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. The acoustic-backscatter map of the Offshore of Bolinas map area, California, was generated from backscatter collected by California State University, Monterey Bay (CSUMB), by Fugro Pelagos, and by Moss Landing Marine Laboratory (MLML). Mapping was completed between 2004 and 2010, using a combination of 200-kHz and 400-kHz Reson 7125, and 244-kHz Reson 8101 multibeam echosounders, as well as 468-kHz SEA SWATHPlus and 250-kHz GeoSwath interferometric systems. Moss Landing Marine Laboratory mapped the nearshore region north of Bolinas in 2004 prior to the California Seafloor Mapping Program (CSMP). The nearshore region from south of Bolinas Lagoon to Stinson Beach was mapped by Fugro Pelagos in 2009 for a project outside of the CSMP and only bathymetry data were collected. Therefore, note that the shaded relief map coverage (see Bathymetry Hillshade--Offshore of Bolinas, California, DS 781) does not match the acoustic-backscatter map coverage (see Backscatter A-E--Offshore of Bolinas, California, DS 781). Within the acoustic-backscatter imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and sediment type. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones). These data are not intended for navigational purposes.
Description: This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files is included in "BackscatterD_Snippets_OffshoreBolinas.zip", which are accessible from http://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. The acoustic-backscatter map of the Offshore of Bolinas map area, California, was generated from backscatter collected by California State University, Monterey Bay (CSUMB), by Fugro Pelagos, and by Moss Landing Marine Laboratory (MLML). Mapping was completed between 2004 and 2010, using a combination of 200-kHz and 400-kHz Reson 7125, and 244-kHz Reson 8101 multibeam echosounders, as well as 468-kHz SEA SWATHPlus and 250-kHz GeoSwath interferometric systems. Moss Landing Marine Laboratory mapped the nearshore region north of Bolinas in 2004 prior to the California Seafloor Mapping Program (CSMP). The nearshore region from south of Bolinas Lagoon to Stinson Beach was mapped by Fugro Pelagos in 2009 for a project outside of the CSMP and only bathymetry data were collected. Therefore, note that the shaded relief map coverage (see Bathymetry Hillshade--Offshore of Bolinas, California, DS 781) does not match the acoustic-backscatter map coverage (see Backscatter A-E--Offshore of Bolinas, California, DS 781). Within the acoustic-backscatter imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and sediment type. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones). These data are not intended for navigational purposes.
Description: This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files is included in "BackscatterE_Swath_OffshoreBolinas.zip", which are accessible from http://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. The acoustic-backscatter map of the Offshore of Bolinas map area, California, was generated from backscatter collected by California State University, Monterey Bay (CSUMB), by Fugro Pelagos, and by Moss Landing Marine Laboratory (MLML). Mapping was completed between 2004 and 2010, using a combination of 200-kHz and 400-kHz Reson 7125, and 244-kHz Reson 8101 multibeam echosounders, as well as 468-kHz SEA SWATHPlus and 250-kHz GeoSwath interferometric systems. Moss Landing Marine Laboratory mapped the nearshore region north of Bolinas in 2004 prior to the California Seafloor Mapping Program (CSMP). The nearshore region from south of Bolinas Lagoon to Stinson Beach was mapped by Fugro Pelagos in 2009 for a project outside of the CSMP and only bathymetry data were collected. Therefore, note that the shaded relief map coverage (see Bathymetry Hillshade--Offshore of Bolinas, California, DS 781) does not match the acoustic-backscatter map coverage (see Backscatter A-E--Offshore of Bolinas, California, DS 781). Within the acoustic-backscatter imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and sediment type. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones). These data are not intended for navigational purposes.
Description: This part of DS 781 presents data for the bathymetry and shaded-relief maps of the Offshore of Bolinas, California (raster data file is included in "Bathymetry_OffshoreBolinas.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. The bathymetry and shaded-relief maps of Offshore Bolinas, California, were generated from bathymetry data collected by California State University, Monterey Bay (CSUMB), by Fugro Pelagos, and by Moss Landing Marine Laboratory (MLML). Mapping was completed between 2004 and 2010, using a combination of 200-kHz and 400-kHz Reson 7125, and 244-kHz Reson 8101 multibeam echosounders, as well as 468-kHz SEA SWATHPlus and 250-kHz GeoSwath interferometric systems. Moss Landing Marine Laboratory mapped the nearshore region north of Bolinas in 2004 prior to the California Seafloor Mapping Program (CSMP). The nearshore region from south of Bolinas Lagoon to Stinson Beach was mapped by Fugro Pelagos in 2009 for a project outside of the CSMP and only bathymetry data were collected. These mapping missions combined to collect bathymetry from about the 10-m isobath to beyond the 3-nautical-mile limit of Californiaís State Waters.